Vorläufiger Schulinterner Lehrplan ab 2023/2024 zum Kernlehrplan Sek II (gymnasiale Oberstufe)

an der Käthe-Kollwitz-Gesamtschule, Grevenbroich

Chemie SII

EF UV I: Kohlenstoff und seine "organischen Freunde"

Inhaltsfeld: Organische Stoffklassen

Zeitbedarf: GK: ca. 33 Unterrichtseinheiten à 45 Minuten

Inhaltliche Schwerpunkte:

- Eigenschaften ausgewählter Stoffklassen: Löslichkeit, Schmelztemperatur, Siedetemperatur,
- Elektronenpaarbindung: Einfach- und Mehrfachbindungen, Molekülgeometrie (EPA-Modell)
- intermolekulare Wechselwirkungen

Übergeordnete Kompetenzerwartungen:

Eine vollständige Auflistung der übergeordneten Kompetenzerwartungen befindet sich im KLP Chemie (2022).

- S1, S2, S3, S6, S7, S10, S16, S17
- E1, E2, E3, E4, E5, E10
- K1, K6, K8, K10
- B3, B8, B11

Fachschaftsinterne Absprachen:

Schwerpunkte:

- Erkenntnisgewinnung (Hypothesen zu Struktureigenschaftsbeziehungen ausgewählter Stoffklassen aufstellen und experimentell untersuchen)

Ausgewählte Beiträge zu den Basiskonzepten:

[Auszug aus KLP Chemie (2022)]

Aufbau und Eigenschaften der Stoffe und ihrer Teilchen: Verschiedene funktionelle Gruppen sowie die Unterscheidung von Einfach- und Mehrfachbindungen erlauben eine Systematisierung organischer Verbindungen nach Stoffklassen. Das Zurückführen von Stoffeigenschaften verschiedener Verbindungen und ihrer Isomere auf jeweils unterschiedliche Molekülstrukturen und damit zusammenhängende intermolekulare Wechselwirkungen werden anhand ausgewählter Stoffklassen vertieft.

Chemische Reaktion:

Das Donator-Akzeptor-Prinzip wird durch die Betrachtung von Redoxreaktionen organischer Verbindungen erweitert. Die auf chemischen Reaktionen verschiedener Stoffe zurückzuführende Vielfalt und damit einhergehende Möglichkeit der Produktion organischer Verbindungen wird anhand der Estersynthese konkretisiert.

Sequenzierung: Fragestellungen	Kompetenzerwartungen des Kernlehrplans Die Schülerinnen und Schüler	Didaktisch-methodische Anmerkungen und Empfehlungen
Welches Vorwissen bringen die Lernenden mit? ca. 6 UE	 Aus der SI: Aufbau von Atomen und Ionen aus dem Periodensystem ableiten und mit verschiedenen Modellen beschreiben Reaktionsgleichungen für chemische Reaktionen entwickeln Wechselwirkungen zwischen Teilchen beschreiben und erklären Molekülformeln als Valenzstrichformeln darstellen Elektronenpaarabstoßungsmodell anwenden Experimente zum Nachweis von Stoffen planen 	Diagnosebogen, z.B. Kompetenzcheck: https://www.ccbuchner.de/_files_media/mediathek/downloads/13224.pdf
Die Gesichter des Kohlenstoffs – Grundbaustein der organischen Chemie ca. 6 UE	 ordnen organische Verbindungen aufgrund ihrer funktionellen Gruppen in Stoffklassen ein und benennen diese nach systematischer Nomenklatur (S1, S6, S11), erläutern intermolekulare Wechselwirkungen organischer Verbindungen und erklären ausgewählte Eigenschaften sowie die Verwendung organischer Stoffe auf dieser Grundlage (S2, S13, E7) stellen Hypothesen zu Struktureigenschaftsbeziehungen einer ausgewählten Stoffklasse auf und untersuchen diese experimentell (E3, E4) stellen auch unter Nutzung digitaler Werkzeuge die Molekülgeometrie von Kohlenstoffverbindungen dar und erklären die Molekülgeometrie mithilfe des EPA-Modells (E7, S13) 	Kontext: Diamant und Graphit (Fullerene) Stoffeigenschaften und Aufbau von Diamant und Graphit Molekülgeometrie Elektrische Leitfähigkeit Härte (integriert: Wiederholung der Elektronenpaarbindung, EPA-Modell, Aufbau von Atomen, Wechselwirkungen zwischen Teilchen beschreiben, Primär- und Sekundärbindungen)
Was versteht man unter organischer Chemie? 2 UE	 stellen Hypothesen zu Struktureigenschaftsbeziehungen einer ausgewählten Stoffklasse auf und untersuchen diese experimentell (E3, E4) deuten die Beobachtungen von Experimenten zur Oxidationsreihe der Alkanole und weisen die jeweiligen Produkte nach (E2, E5, S14) 	Charakterisierung organischer Verbindungen, Vergleich der Stoffeigenschaften von organischen und anorganischen Stoffen, z.B. Ethanol, Traubenzucker, Bienenwachs, NaCl, Kalk, Kupfer(II)-oxid (integriert: Reaktionsgleichungen für chemische Reaktionen aufstellen, Molekülformeln als Valenzstrichformeln darstellen)

Sequenzierung: Fragestellungen	Kompetenzerwartungen des Kernlehrplans Die Schülerinnen und Schüler	Didaktisch-methodische Anmerkungen und Empfehlungen
Kohlenstoff und Wasserstoff – zwei beste Freunde der organischen Chemie ca. 4 UE	 erläutern intermolekulare Wechselwirkungen organischer Verbindungen und erklären ausgewählte Eigenschaften sowie die Verwendung organischer Stoffe auf dieser Grundlage (S2, S13, E7) deuten die Beobachtungen von Experimenten zur Oxidationsreihe der Alkanole und weisen die jeweiligen Produkte nach (E2, E5, S14) stellen Hypothesen zu Struktureigenschaftsbeziehungen einer ausgewählten Stoffklasse auf und untersuchen diese experimentell (E3, E4) 	Nachweis der Elemente in organischen Verbindungen • z.B. Verbrennung von Heptan • Kalkwasserprobe • Kondensat prüfen mit Watesmo-Papier zum Nachweis von Wasser) (Integriert: Nachweisreaktionen: Kalkwasserprobe, Glimmspanprobe, Knallgasprobe)
Die Snaps und Filter- Selfies der Kohlenstoffverbindung en – gleiche Atome, anderer Aufbau, andere Eigenschaften	 ordnen organische Verbindungen aufgrund ihrer funktionellen Gruppen in Stoffklassen ein und benennen diese nach systematischer Nomenklatur (S1, S6, S11), erläutern intermolekulare Wechselwirkungen organischer Verbindungen und erklären ausgewählte Eigenschaften sowie die Verwendung organischer Stoffe auf dieser Grundlage (S2, S13, E7) stellen Isomere von Alkanolen dar und erklären die Konstitutionsisomerie (S11, E7). stellen Hypothesen zu Struktureigenschaftsbeziehungen einer ausgewählten Stoffklasse auf und untersuchen diese experimentell (E3, E4) stellen auch unter Nutzung digitaler Werkzeuge die Molekülgeometrie von Kohlenstoffverbindungen dar und erklären die Molekülgeometrie mithilfe des EPA-Modells (E7, S13) beurteilen die Verwendung von Lösemitteln in Produkten des Alltags auch im Hinblick auf die Entsorgung aus chemischer und ökologischer Perspektive (B1, B7, B8, B11, B14, S2, S10, E11) 	 Charakterisierung der Alkane, Alkene, Alkine (experimentelle Untersuchung der Eigenschaften) IUPAC-Nomenklatur (Konstitutions-)Isomerie Reaktionsverhalten (un)gesättigter Kohlenwasserstoffe: Verbrennung (un)vollständig, Additionsreaktion Löslichkeitseigenschaften (im Hinblick auf Beurteilungsaufgabe) (Integriert: Van-der-Waals-Kräfte, hydrophil, hydrophob, Viskosität, Siedetemperatur)
Kohlenstoffverbind- ungen – Wer gehört noch zum Freundeskreis? ca. 3 UE	 ordnen organische Verbindungen aufgrund ihrer funktionellen Gruppen in Stoffklassen ein und benennen diese nach systematischer Nomenklatur (S1, S6, S11), erläutern intermolekulare Wechselwirkungen organischer Verbindungen und erklären ausgewählte Eigenschaften sowie die Verwendung organischer Stoffe auf dieser Grundlage (S2, S13, E7) 	 Vielfalt organischer Verbindungen, Chemie der Kohlenstoffverbindungen: C, H, N, O, P, S (Kohlenhydrate, Fette, Eiweiße) Klassifizierung anorganische und organische Chemie Funktionelle Gruppen (Integriert: homologe Reihe, Hydroxygruppe für Alkohole als bekannte funktionelle Gruppe)

EF UV II: Vom Alkohol zum Aromastoff

Inhaltsfeld: Organische Stoffklassen

Zeitbedarf: GK: ca. 30 Unterrichtseinheiten à 45 Minuten

Fachschaftsinterne Absprachen:

Schwerpunkte:

- Erkenntnisgewinnung (Hypothesen zu Struktureigenschaftsbeziehungen ausgewählter Stoffklassen aufstellen und experimentell untersuchen)
- Bewertung (Beurteilung der Auswirkungen bei der Aufnahme von Ethanol hinsichtlich oxidativer Abbauprozesse im menschlichen Körper unter Aspekten der Gesunderhaltung)

Inhaltliche Schwerpunkte:

- funktionelle Gruppen verschiedener Stoffklassen und ihre Nachweise: Hydroxygruppe, Carbonylgruppe, Carboxygruppe und Estergruppe
- Eigenschaften ausgewählter Stoffklassen: Löslichkeit, Schmelztemperatur, Siedetemperatur,
- Elektronenpaarbindung: Einfach- und Mehrfachbindungen, Molekülgeometrie (EPA-Modell)
- Konstitutionsisomerie
- intermolekulare Wechselwirkungen
- Oxidationsreihe der Alkanole: Oxidationszahlen
- Estersynthese

Ausgewählte Beiträge zu den Basiskonzepten:

[Auszug aus KLP Chemie (2022)]

Aufbau und Eigenschaften der Stoffe und ihrer Teilchen: Verschiedene funktionelle Gruppen sowie die Unterscheidung von Einfach- und Mehrfachbindungen erlauben eine Systematisierung organischer Verbindungen nach Stoffklassen. Das Zurückführen von Stoffeigenschaften verschiedener Verbindungen und ihrer Isomere auf jeweils unterschiedliche Molekülstrukturen und damit zusammenhängende intermolekulare Wechselwirkungen werden anhand ausgewählter Stoffklassen vertieft.

Chemische Reaktion:

Das Donator-Akzeptor-Prinzip wird durch die Betrachtung von Redoxreaktionen organischer Verbindungen erweitert. Die auf chemischen Reaktionen verschiedener Stoffe zurückzuführende Vielfalt und damit einhergehende Möglichkeit der Produktion organischer Verbindungen wird anhand der Estersynthese konkretisiert.

Übergeordnete Kompetenzerwartungen:

Eine vollständige Auflistung der übergeordneten Kompetenzerwartungen befindet sich im KLP Chemie (2022).

- S1, S2, S3, S6, S7, S10, S16, S17
- E1, E2, E3, E4, E5, E10
- K1, K6, K8, K10
- B3, B8, B11

Sequenzierung: Fragestellungen	Kompetenzerwartungen des Kernlehrplans Die Schülerinnen und Schüler	Didaktisch-methodische Anmerkungen und Empfehlungen
Welches Vorwissen bringen die Lernenden mit? 1–2 UE	Aus der SI: • Homologe Reihen der Kohlenwasserstoffe unterscheiden • Kohlenwasserstoffe nach den IUPAC-Regeln benennen • Struktur-Eigenschafts-Prinzip • Experimente zum charakteristischen Nachweis von Stoffen anwenden	Diagnosebogen, z.B. Kompetenzcheck: https://www.ccbuchner.de/_files_media/mediathek/downloads/13234.pdf
Was steckt chemisch hinter Getränken wie Wein, Bier oder Sekt und wie wird Trinkalkohol hergestellt? ca. 6 UE	 ordnen organische Verbindungen aufgrund ihrer funktionellen Gruppen in Stoffklassen ein und benennen diese nach systematischer Nomenklatur (S1, S6, S11), erläutern intermolekulare Wechselwirkungen organischer Verbindungen und erklären ausgewählte Eigenschaften sowie die Verwendung organischer Stoffe auf dieser Grundlage (S2, S13, E7) stellen Hypothesen zu Struktureigenschaftsbeziehungen einer ausgewählten Stoffklasse auf und untersuchen diese experimentell (E3, E4) stellen auch unter Nutzung digitaler Werkzeuge die Molekülgeometrie von Kohlenstoffverbindungen dar und erklären die Molekülgeometrie mithilfe des EPA-Modells (E7, S13) 	 Kontext: Herstellung von Alkohol Alkoholische Gärung, Weinherstellung Strukturaufklärung des Ethanol-Moleküls Stoffklasse der Alkohole Homologe Reihe der Alkohole Eigenschaften der (ein- und mehrwertigen Alkohole): Siedetemperaturen, polar/unpolar, Struktur-Eigenschaftsbeziehungen (z.B. Lauche-Effekt)
Vanillin und Zimtaldehyd – zwei wohlriechende Produkte Um welche Stoffe handelt es sich und wie werden sie aus Alkohol hergestellt?	 ordnen organische Verbindungen aufgrund ihrer funktionellen Gruppen in Stoffklassen ein und benennen diese nach systematischer Nomenklatur (S1, S6, S11), erläutern intermolekulare Wechselwirkungen organischer Verbindungen und erklären ausgewählte Eigenschaften sowie die Verwendung organischer Stoffe auf dieser Grundlage (S2, S13, E7) erläutern das Donator-Akzeptor-Prinzip unter Verwendung der Oxidationszahlen am Beispiel der Oxidationsreihe der Alkanole (S4, S12, S14, S16), stellen Hypothesen zu Struktureigenschaftsbeziehungen einer ausgewählten Stoffklasse auf und untersuchen diese experimentell (E3, E4) 	 Vom Alkohol zum Aldehyd und Keton Oxidationsreihe der Alkohole Homologe Reihe der Alkanale Nachweismethoden für Aldehyde, Ketone, Carbonsäuren (Verwendung und Vorkommen) Primäre, sekundäre und tertiäre Alkohole Funktionelle Gruppen: Hydroxy-Gruppe, Aldehyd-Gruppe, Keto-Gruppe, Carboxy-Gruppe Nomenklatur
ca. 8 UE	deuten die Beobachtungen von Experimenten zur Oxidationsreihe der Alkanole und weisen die jeweiligen Produkte nach (E2, E5, S14),	Isomerie Oxidationszahlen bestimmen

Sequenzierung: Fragestellungen	Kompetenzerwartungen des Kernlehrplans Die Schülerinnen und Schüler	Didaktisch-methodische Anmerkungen und Empfehlungen
Wie gefährlich ist Alkohol wirklich? – Die versteckten Risiken des Abbauprozesses und der Sucht ca. 3 UE	 erläutern das Donator-Akzeptor-Prinzip unter Verwendung der Oxidationszahlen am Beispiel der Oxidationsreihe der Alkanole (S4, S12, S14, S16), deuten die Beobachtungen von Experimenten zur Oxidationsreihe der Alkanole und weisen die jeweiligen Produkte nach (E2, E5, S14), beurteilen die Auswirkungen der Aufnahme von Ethanol hinsichtlich oxidativer Abbauprozesse im menschlichen Körper unter Aspekten der Gesunderhaltung (B6, B7, E1, E11, K6), 	 Alkohol im menschlichen Körper Giftigkeit von Alkoholen und ihren Oxidationsprodukten Ethanol/Methanol Kontext: Zeitungsartikel zum Thema "Tod von Schüler auf Klassenfahrt durch gepanschten Alkohol" möglicher Exkurs: Alkoholsucht, Alkohol im Straßenverkehr
Essiggurken, Rhabarber, Joghurt, Zitronen – Carbonsäuren im Alltag ca. 4 UE	 ordnen organische Verbindungen aufgrund ihrer funktionellen Gruppen in Stoffklassen ein und benennen diese nach systematischer Nomenklatur (S1, S6, S11), erläutern intermolekulare Wechselwirkungen organischer Verbindungen und erklären ausgewählte Eigenschaften sowie die Verwendung organischer Stoffe auf dieser Grundlage (S2, S13, E7) stellen Hypothesen zu Struktureigenschaftsbeziehungen einer ausgewählten Stoffklasse auf und untersuchen diese experimentell (E3, E4) 	 Vom Alkohol zur Carbonsäure Struktur und Eigenschaften: Löslichkeit Homologe Reihe der Alkansäuren Carbonsäuren im Alltag, Vorkommen, Verwendung
Alles riecht – Aromastoffe Was sind Aromastoffe aus chemischer Sicht und wie kann man sie herstellen? ca. 8 UE	 ordnen organische Verbindungen aufgrund ihrer funktionellen Gruppen in Stoffklassen ein und benennen diese nach systematischer Nomenklatur (S1, S6, S11), stellen Hypothesen zu Struktureigenschaftsbeziehungen einer ausgewählten Stoffklasse auf und untersuchen diese experimentell (E3, E4) führen Estersynthesen durch und leiten aus Stoffeigenschaften der erhaltenen Produkte Hypothesen zum strukturellen Aufbau der Estergruppe ab (E3, E5), diskutieren den Einsatz von Konservierungs- und Aromastoffen in der Lebensmittelindustrie aus gesundheitlicher und ökonomischer Perspektive und leiten entsprechende Handlungsoptionen zu deren Konsum ab (B5, B9, B10, K5, K8, K13), beurteilen die Verwendung von Lösemitteln in Produkten des Alltags auch im Hinblick auf die Entsorgung aus chemischer und ökologischer Perspektive (B1, B7, B8, B11, B14, S2, S10, E11) 	 Aromastoffe, Ester, Konservierungsstoffe natürliche/unnatürliche Aromastoffe Esterbildung, Eigenschaften und Struktur, Esterspaltung, Kondensation, Hydrolyse Ester als Lösemittel/Aromastoffe/Kunststoffe/Fette Verwendung von Estern im Alltag

QUALIFIKATIONSPHASE Q1 GRUNDKURS

Q1 UV I: Säuren und Basen im Alltag

Inhaltsfeld Säuren, Basen und analytische Verfahren

Sequenzierung: Fragestellungen	Kompetenzerwartungen des Kernlehrplans	Didaktisch-methodische Anmerkungen und Empfehlungen
	Die Schülerinnen und Schüler	
Welche Gefahren gehen von Säuren und Basen aus? Welche Maßnahmen	klassifizieren die auch in Alltagsprodukten identifizierten Säuren und Basen mithilfe des Säure-Base- Konzepts von Brønsted und erläutern ihr Reaktionsverhalten unter Berücksichtigung von Protolysegleichungen (S1, S6, S7, S16,	
können zum Gesundheits- und Umweltschutz ergriffen werden?	 K6), planen hypothesengeleitet Experimente zur Konzentrationsbestimmung von Säuren und Basen auch in Alltagsprodukten (E1, E2, E3, E4) 	
2 UE	beurteilen den Einsatz, die Wirksamkeit und das Gefahrenpotenzial von Säuren, Basen und Salzen als Inhaltsstoffe in Alltagsprodukten und leiten daraus begründet Handlungsoptionen ab (B8, B11, K8),	
	bewerten die Qualität von Produkten des Alltags oder Umweltparameter auf der Grundlage von qualitativen und quantitativen Analyseergebnissen und beurteilen die Daten hinsichtlich ihrer Aussagekraft (B3, B8, K8).	
Neutralisation von Säuren und Basen	 definieren den Begriff der Reaktionsenthalpie und grenzen diesen von der inneren Energie ab (S3), 	
	 erklären im Zusammenhang mit der Neutralisationsreaktion den ersten Hauptsatz der Thermodynamik (Prinzip der Energieerhaltung) (S3, S10), 	
	 erläutern die Neutralisationsreaktion unter Berücksichtigung der Neutralisationsenthalpie (S3, S12), 	
	führen das Verfahren einer Säure-Base- Titration mit Endpunktbestimmung mittels Indikator am Beispiel starker Säuren und Basen durch und werten die Ergebnisse auch unter Berücksichtigung einer Fehleranalyse aus (E5, E10, K10),	
Säuren und Basen in der Küche	führen das Verfahren einer Säure-Base- Titration mit Endpunktbestimmung	LK zusätzlich:
Wie lässt sich die Säurekonzentration bzw.Basenkonzentration bestimmen?	mittels Indikator am Beispiel starker Säuren und Basen durch und werten die Ergebnisse auch unter Berücksichtigung einer Fehleranalyse aus (E5, E10, K10),	LK: sagen den Verlauf von Titrationskurven von starken und schwachen Säuren und Basen anhand der Berechnung der charakteristischen
	 klassifizieren die auch in Alltagsprodukten identifizierten Säuren und Basen mithilfe des Säure-Base- 	Punkte (Anfangs- pH-Wert, Halbäquivalenzpunkt, Äquivalenzpunkt)

Welcher Essig ist saurer?	Konzepts von Brønsted und erläutern	voraus (S10, S17)
	 ihr Reaktionsverhalten unter Berücksichtigung von Protolysegleichungen (S1, S6, S7, S16, K6) planen hypothesengeleitet Experimente zur Konzentrationsbestimmung von 	LK: werten pH-metrische Titrationen von ein- und mehrprotonigen Säuren aus und erläutern den Verlauf der Titrationskurven auch bei unvollständiger Protolyse (S9, E8, E10,
ca. 12 UE	Säuren und Basen auch in Alltagsprodukten (E1, E2, E3, E4)	K7), • LK: beurteilen verschiedene Säure-
	interpretieren die Gleichgewichtslage von Protolysereaktionen mithilfe des Massenwirkungsgesetzes und die daraus resultierenden Säure-/Base- Konstanten (S2, S7))	Base-Titrationsverfahren hinsichtlich ihrer Angemessenheit und Grenzen (B3, K8, K9) • LK: leiten die Säure-/Base-Konstante und den pKS/pKB-Wert von Säuren und
	bewerten die Qualität von Produkten des Alltags oder Umweltparameter auf der Grundlage von qualitativen und quantitativen Analyseergebnissen und beurteilen die Daten hinsichtlich ihrer Aussagekraft (B3, B8, K8)	Ba sen mithilfe des Massen- wirkungsgesetzes ab und berechnen diese (S7, S17)
Säuren und Basen in Reinigern Wie lässt sich die	planen hypothesengeleitet Experimente zur Konzentrationsbestimmung von Säuren und Basen auch in Alltagsprodukten (E1, E2, E3, E4),	
Säurekonzentration bzw. Basenkonzentration bestimmen? ca. 4 UE	bewerten die Qualität von Produkten des Alltags oder Umweltparameter auf der Grundlage von qualitativen und quantitativen Analyseergebnissen und beurteilen die Daten hinsichtlich ihrer Aussagekraft (B3, B8, K8).	
Säuren und Basen in Reinigern Welche Wirkung haben Säuren und Basen in sauren und basischen Reinigern? Wie lässt sich die unterschiedliche Reaktionsgeschwindigkeit der Reaktionen Essigsäure mit Kalk und Salzsäure mit Kalk erklären? ca. 8 UE	 klassifizieren die auch in Alltagsprodukten identifizierten Säuren und Basen mithilfe des Säure-Base- Konzepts von Brønsted und erläutern ihr Reaktionsverhalten unter Berücksichtigung von Protolysegleichungen (S1, S6, S7, S16, K6), berechnen pH-Werte wässriger Lösungen starker Säuren und starker Basen bei vollständiger (LK: auch bei nicht vollständiger) Protolyse (S17), erläutern die unterschiedlichen Reaktionsgeschwindig-keiten von starken und schwachen Säuren mit unedlen Metallen oder Salzen anhand der unterschied lichen Gleichgewichtslage der Protolysereaktionen (S3, S7, S16)) 	Kontext: Saure und basische Reiniger schwache und starke Säuren und Basen
Wie funktioniert ein Puffersystem? LK: ca. 6 UE	LK: erläutern die Wirkung eines Puffersystems auf Grundlage seiner Zusammensetzung (S2, S7, S16), • berechnen den pH-Wert von	Kontext: Puffersystem menschliches Blut
	Puffersystemen anhand der Henderson- Hasselbalch-Gleichung (S17)	

Q1 UV II: Salze Inhaltsfeld Säuren, Basen und analytische Verfahren

Sequenzierung: Fragestellungen	Kompetenzerwartungen des Kernlehrplans Die Schülerinnen und Schüler	Didaktisch-methodische Anmerkungen und Empfehlungen
Wie funktionieren Hot- und Cold-Packs? Warum wird eine Salz- Wasser-Mischung warm und die andere kalt? ca. 8 UE (LK: 14 UE)	 deuten endotherme und exotherme Lösungsvorgänge bei Salzen unter Berücksichtigung der Gitter- und Solvatationsenergie (S12, K8) weisen ausgewählte lonensorten (Halogenid-Ionen, Ammonium-Ionen, Carbonat-Ionen) salzartiger Verbindungen qualitativ nach (E5) 	 Zusätzlich LK: LK: erklären endotherme und exotherme Lösungsvorgänge bei Salzen unter Einbeziehung der Gitter- und Solvatationsenergie und führen den spontanen Ablauf eines endothermen Lösungsvorgangs auf die Entropieänderung zurück (S12, K8), LK: erklären Fällungsreaktionen auf der Grundlage vonLöslichkeitsgleichgewichten (S2, S7) LK: interpretieren die Messdaten von Lösungsenthalpien verschiedener Salze unter Berücksichtigung der Entropie (S12, E8)

Q1 UV III: Mobile Energieträger im Vergleich Inhaltsfeld Elektrochemische Prozesse und Energetik

Sequenzierung: Fragestellungen	Kompetenzerwartungen des Kernlehrplans	Didaktisch-methodische Anmerkungen und Empfehlungen
	Die Schülerinnen und Schüler	
Redoxreaktionen und Redoxreihe Wer hat eigentlich die "Hosen" an?	 erläutern Redoxreaktionen als dynamische Gleichgewichtsreaktionen unter Berücksichtigung des Donator- Akzeptor-Konzepts (S7, S12, K7), entwickeln Hypothesen zum Auftreten von Redoxreaktionen zwischen Metallatomen und -ionen und überprüfen diese experimentell (E3, E4, E5, E10), 	Kontext: I Einstieg: Diagnose:
Von der Zellspannung zur Spannungsreihe	 nennen die metallische Bindung und die Beweglichkeit hydratisierter Ionen als Voraussetzungen für einen geschlossenen Stromkreislauf der galvanischenZelle und der Elektrolyse (S12, S15, K10), ermitteln Messdaten ausgewählter galvanischer Zellen zur Einordnung in die elektrochemische Spannungsreihe (E6, E8), erläutern den Aufbau und die Funktionsweise einer galvanischen Zelle hinsichtlich der chemischen Prozesse auch mit digitalen Werkzeugen und berechnen die jeweilige Zellspannung (S3, S17, E6, K11), 	
Mobile Energieträger Wie sind Batterien und Akkumulatoren aufgebaut?	erläutern den Aufbau und die Funktion ausgewählter elektrochemischer Spannungsquellen aus Alltag und Technik (Batterie, Akkumulator, Brennstoffzelle) unter Berücksichtigung der Teilreaktionen und möglicher Zellspannungen (S10, S12, K9),	
Woher bekommt ein Brennstoffzellen-Auto seinen Brennstoff? Elektrolyse	 nennen die metallische Bindung und die Beweglichkeit hydratisierter Ionen als Voraussetzungen für einen geschlossenen Stromkreislauf der galvanischenZelle und der Elektrolyse (S12, S15, K10) erläutern die Reaktionen einer Elektrolyse auf stofflicher und energetischer Ebene als Umkehr der Reaktionen eines galvanischen Elements (S7, S12, K8) 	

Wasserstoff - Brennstoff der Zukunft? Wie viel Energie wird bei der	interpretieren energetische Erscheinungen bei Redoxreaktionen	Kontext: Autoantriebe der Zukunft
Verbrennungsreaktion verschiedener Energieträger freigesetzt?	 auf die Umwandlung eines Teils der in Stoffen gespeicherten Energie in Wärme und Arbeit (S3, E11), ermitteln auch rechnerisch die Standardreaktionsenthalpien ausgewählter Redoxreaktionen unter Anwendung des Satzes von Hess (E4, E7, S17, K2) 	(s.DB Implementationsauftakt Folie 67, 68, 69) Aber auch ein konkretes Beispiel UV IV
Wie funktioniert die Wasserstoffverbrennung in der Brennstoffzelle? Abschluss der U-Einheit?	 erläutern den Aufbau und die Funktion ausgewählter elektrochemischer Spannungsquellen aus Alltag und Technik (Batterie, Akkumulator, Brennstoffzelle) unter Berücksichtigung der Teilreaktionen und möglicher Zellspannungen (S10, S12, K9), erklären am Beispiel einer Brennstoffzelle die Funktion der heterogenen Katalyse unter Verwendung geeigneter Medien (S8, S12, K11), erläutern die Reaktionen einer Elektrolyse auf stofflicher und energetischer Ebene als Umkehr der Reaktionen eines galvanischen Elements (S7, S12, K8) bewerten die Verbrennung fossiler Energieträger und elektrochemische 	
Welche Vor- und Nachteile hat die Verwendung der verschiedenen Energieträger? Bewertungsaufgabe zum Ende des UVs	Energiewandler hinsichtlich Effizienz und Nachhaltigkeit auch mithilfe von recherchierten thermodynamischen Daten (B2, B4, E8, K3, K12),	
2. große Bewertungsaufgabe	diskutieren Möglichkeiten und Grenzen bei der Umwandlung, Speicherung und Nutzung elektrischer Energie auf Grundlage der relevanten chemischen und thermodynamischen Aspekte im Hinblick auf nachhaltiges Handeln (B3,B10, B13, E12, K8) (aus Inhaltsfeld 4)	Beispiele:

Q1 UV IV: Korrosion Inhaltsfeld Elektrochemische Prozesse und Energetik

Korrosion Wie kann man Metalle vor Korrosion schützen?	 erläutern die Reaktionen einer Elektrolyse auf stofflicher und energetischer Ebene als Umkehr der Reaktionen eines galvanischen Elements (S7, S12, K8) interpretieren energetische Erscheinungen bei Redoxreaktionen auf die Umwandlung eines Teils der in Stoffen gespeicherten Energie in Wärme und Arbeit (S3, E11), erläutern die Bildung eines Lokalelements bei Korrosionsvorgängen auch mithilfe von Reaktionsgleichungen (S3, S16, E1), entwickeln eigenständig ausgewählte Experimente zum Korrosionsschutz(Galvanik, Opferanode) und führen sie durch (E1, E4, E5), ermitteln auch rechnerisch die Standardreaktions-enthalpien ausgewählter Redoxreaktionen unter Anwendung des Satzes von Hess (E4, E7, S17, K2).
Abschluss der U-Einheit?	beurteilen Folgen von Korrosionsvorgängen
Bewertungsaufgabe zum Ende des UVs	und adäquate Korrosionsschutzmaßnahmen unter ökologischen und ökonomischen Aspekten (B12, B14, E1).

QUALIFIKATIONSPHASE Q2 GRUNDKURS - OC

Q2 UV I: Erdöl als Basis Inhaltsfeld Reaktionswege in der organischen Chemie

Sequenzierung: Fragestellungen	Kompetenzerwartungen des Kernlehrplans Die Schülerinnen und Schüler	Didaktisch-methodische Anmerkungen und Empfehlungen
Vom Erdöl zu Alkenen und Halogenalkanen Cracken, Destillation (Zusätzlich) Warum werden Kohlenwasserstoffe halogeniert? Reaktionsmechanismen	 stellen den Aufbau von Vertretern der Stoffklassen der Alkane, Halogenalkane, Alkene, Alkine, Alkanole, Alkanale, Alkanone, Carbonsäuren, Ester und Amine auch mit digitalen Werkzeugen dar und berücksichtigen dabei auch ausgewählte Isomere (S1, E7, K11), erklären Stoffeigenschaften und Reaktionsverhalten mit dem Einfluss der jeweiligen funktionellen Gruppen unter Berücksichtigung von inter- und intramolekularen Wechselwirkungen (S2, S13), erläutern die Reaktionsmechanismen der radikalischen Substitutions- und elektrophilen Additionsreaktion unter Berücksichtigung der spezifischen Reaktionsbedingungen auch mit digitalen Werkzeugen (S8, S9, S14, E9, K11). schließen mithilfe von spezifischen Nachweisen der Reaktionsprodukte (Doppelbindung zwischen Kohlenstoff-Atomen, Carbonyl- und Carboxy-Gruppe) auf den Reaktionsverlauf und bestimmen den Reaktionstyp (E5, E7, 	Kontext: Erdöl Einstieg: Diagnose: Nomenklatur Polarität: Van der Waals Kräfte
Abschluss der U- Einheit? Bewertungsaufgabe zum Ende des UVs	 S4, K10) recherchieren und bewerten Nutzen und Risiken ausgewählter Produkte der organischen Chemie unter vorgegebenen Fragestellungen (B1, B11, K2, K4) 	Beispiele: Sollte Glyphosat wieder zugelassen werden? FCKW's DDT / persistenter Stoff (NIM)

Q2 UV II Vom Wein zum Essig - Redoxreaktionen - alternative Synthesewege

Inhaltsfeld Reaktionswege in der organischen Chemie

Sequenzierung: Fragestellungen	Kompetenzerwartungen des Kernlehrplans Die Schülerinnen und Schüler	Didaktisch-methodische Anmerkungen und Empfehlungen
Vom Wein zum Essig Wieso schmeckt der Wein nach Essig, wenn er an der Luft steht? Oxidationszahlen und Redoxreaktionen Aldehyde und Ketone Carbonsäuren	 stellen den Aufbau von Vertretern der Stoffklassen der Alkane, Halogenalkane, Alkene, Alkine, Alkanole, Alkanale, Alkanone, Carbonsäuren, Ester und Amine auch mit digitalen Werkzeugen dar und berücksichtigen dabei auch ausgewählte Isomere (S1, E7, K11), erklären Stoffeigenschaften und Reaktionsverhalten mit dem Einfluss der jeweiligen funktionellen Gruppen unter Berücksichtigung von inter- und intramolekularen Wechselwirkungen (S2, S13), erklären Redoxreaktionen in organischen Synthesewegen unter Berücksichtigung der Oxidationszahlen (S3, S11, S16) schließen mithilfe von spezifischen Nachweisen der Reaktionsprodukte (Doppelbindung zwischen Kohlenstoff-Atomen, Carbonyl- und Carboxy-Gruppe) auf den Reaktionsverlauf und bestimmen den Reaktionstyp (E5, E7, S4, K10) 	Kontext: Einstieg: Diagnose: Herstellung (kurze Wiederholung) Nomenklatur Polarität: Van der Waals Kräfte, H- Brücken

Q2 UV III: Esthersynthese unter Berücksichtigung der Katalyse und Le Chatelier

Inhaltsfeld Reaktionswege in der organischen Chemie

Sequenzierung: Fragestellungen	Kompetenzerwartungen des Kernlehrplans Die Schülerinnen und Schüler	Didaktisch-methodische Anmerkungen und Empfehlungen
Wie wird ein Ester hergestellt? Wie wird die Herstellung des Esters optimiert?	 stellen den Aufbau von Vertretern der Stoffklassen der Alkane, Halogenalkane, Alkene, Alkine, Alkanole, Alkanole, Alkanole, Alkanole, Carbonsäuren, Ester und Amine auch mit digitalen Werkzeugen dar und berücksichtigen dabei auch ausgewählte Isomere (S1, E7, K11), erklären die Estersynthese aus Alkanolen und Carbonsäuren unter Berücksichtigung der Katalyse (S4, S8, S9, K7), erläutern die Planung und Durchführung einer Estersynthese in Bezug auf die Optimierung der Ausbeute auf der Grundlage des Prinzips von Le Chatelier (E4, E5, K13) 	Kontext: Einstieg: Diagnose: Veresterung (Wdhlg) Le Chatelier (Wdhlg) Katalyse
Abschluss der U- Einheit? Bewertungsaufgabe zum Ende des UVs	recherchieren und bewerten Nutzen und Risiken ausgewählter Produkte der organischen Chemie unter vorgegebenen Fragestellungen (B1, B11, K2, K4),	

Q2 UV IV: Kunststoffe herstellen und recyceln Inh

Inhaltsfeld Moderne Werkstoffe

Sequenzierung: Fragestellungen	Kompetenzerwartungen des Kernlehrplans	Didaktisch-methodische Anmerkungen und Empfehlungen	
	Die Schülerinnen und Schüler		
Wie lassen sich Plastiktüten aus PE herstellen?	 erklären die Eigenschaften von Kunststoffen aufgrund ihrer molekularen Strukturen (Kettenlänge, Vernetzungsgrad) (S11, S13), klassifizieren Kunststoffe anhand ihrer 	Kontext:	
Eigenschaften von PE	Eigenschaften begründet nach Thermoplasten, Duroplasten und Elastomeren (S1, S2), • erläutern die Verknüpfung von		
Recycling von PE	Monomermolekülen zu Makromolekülen mithilfe von Reaktions-gleichungen an einem Beispiel (S4, S12, S16), beschreiben den Weg eines Anwendungsproduktes von der Rohstoffgewinnung über die Produktion bis zur Verwertung (S5,		
	S10, K1, K2).		
Herstellen weiterer Kunststoffe	• stellen den Aufbau von Vertretern der Stoffklassen der Alkane, Halogenalkane, Alkene, Alkine,	Nylonherstellung? Inhaltsfeld Reaktionswege in der	
(zusätzlich)	Alkanole, Alkanale, Alkanone, Carbonsäuren, Ester und Amine auch mit digitalen Werkzeugen dar und berücksichtigen dabei auch	organischen Chemie	
Eigenschaften von weiteren Kunststoffen	 ausgewählte Isomere (S1, E7, K11), klassifizieren Kunststoffe anhand ihrer Eigenschaften begründet nach Thermoplasten, Duroplasten und 		
mithilfe der Struktur erklären	 Elastomeren (S1, S2), führen eigenständig geplante Experimente zur Untersuchung von Eigenschaften organischer Werkstoffe durch und werten diese aus (E4, E5), 		
Vor- und Nachteile im Alltag	 erklären ermittelte Stoffeigenschaften am Beispiel eines Funktionspolymers mit geeigneten Modellen (E1, E5, E7, S2). 		
	vergleichen anhand von Bewertungskriterien Produkte aus unterschiedlichen Kunststoffen und leiten daraus Handlungsoptionen für die alltägliche Nutzung ab (B5, B14, K2, K8, K13)		
Recycling von Kunststoffen ca. ?? UStd.	planen zielgerichtet anhand der Eigenschaften verschiedener Kunststoffe Experimente zur Trennung	Kontext: Entsorgung von	
ca. :: OSiu.	 und Verwertung von Verpackungsabfällen (E4, S2), bewerten stoffliche und energetische Verfahren der Kunststoffverwertung 		
	unter Berücksichtigung ausgewählter Nachhaltigkeitsziele (B6, B13, S3, K5, K8).		

Abschluss der U- Einheit Bewertungsaufgabe	•	bewerten den Einsatz von Erdöl und nachwachsenden Rohstoffen für die Herstellung und die Verwendung von Produkten aus Kunststoffen im Sinne einer nachhaltigen Entwicklung aus ökologischer, ökonomischer und	Beispiel: Warum darf bioabbaubare Mülltüte nicht in die Biotonne?
		•	
		sozialer Perspektive (B9, B12, B13),	

Q2 UV V: Fette Inhaltsfeld Reaktionswege in der organischen Chemie

Sequenzierung: Fragestellungen	Kompetenzerwartungen des Kernlehrplans	Didaktisch-methodische Anmerkungen und Empfehlungen
	Die Schülerinnen und Schüler	
Untersuchung unterschiedlicher Fette	 erläutern den Aufbau und die Eigenschaften von gesättigten und ungesättigten Fetten (S1, S11, S13), erklären Redoxreaktionen in 	Inhaltsfeld Reaktionswege in der organischen Chemie
ca. 20 ? UStd.	organischen Synthesewegen unter Berücksichtigung der Oxidationszahlen (S3, S11, S16),	Inhaltsfeld Reaktionswege in der organischen Chemie
	 erklären die Estersynthese aus Alkanolen und Carbonsäuren unter Berücksichtigung der Katalyse (S4, S8, S9, K7), 	Inhaltsfeld Reaktionswege in der organischen Chemie
	 schließen mithilfe von spezifischen Nachweisen der Reaktionsprodukte (Doppelbindung zwischen Kohlenstoff- Atomen, Carbonyl- und Carboxy- Gruppe) auf den Reaktionsverlauf und 	
Eigenschaften Siedepunkt und Löslichkeit	 bestimmen den Reaktionstyp (E5, E7, S4, K10), erläutern die Planung und Durchführung einer Estersynthese in Bezug auf die Optimierung der 	Inhaltsfeld Reaktionswege in der organischen Chemie
	Ausbeute auf der Grundlage des Prinzips von Le Chatelier (E4, E5, K13),	Inhaltsfeld Reaktionswege in der organischen Chemie
	 erklären Stoffeigenschaften und Reaktionsverhalten mit dem Einfluss der jeweiligen funktionellen Gruppen unter Berücksichtigung von inter- und intramolekularen Wechselwirkungen (S2, S13), 	Inhaltsfeld Reaktionswege in der organischen Chemie
	unterscheiden experimentell zwischen gesättigten und ungesättigten Fettsäuren (E5, E11).	
Abschluss der U- Einheit	beurteilen die Qualität von Fetten hinsichtlich ihrer Zusammensetzung und Verarbeitung im Bereich der Lebensmitteltechnik und der eigenen Ernährung	Beispiele:
	(B7, B8, K̃8).	